Online Anomaly Detection Under Markov Statistics With Controllable Type-I Error

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Anomaly Detection under Adversarial Impact

Security analysis of learning algorithms is gaining increasing importance, especially since they have become target of deliberate obstruction in certain applications. Some security-hardened algorithms have been previously proposed for supervised learning; however, very little is known about the behavior of anomaly detection methods in such scenarios. In this contribution, we analyze the perform...

متن کامل

Hidden Markov Anomaly Detection

We introduce a new anomaly detection methodology for data with latent dependency structure. As a particular instantiation, we derive a hidden Markov anomaly detector that extends the regular one-class support vector machine. We optimize the approach, which is non-convex, via a DC (difference of convex functions) algorithm, and show that the parameter ν can be conveniently used to control the nu...

متن کامل

Modeling Local Video Statistics for Anomaly Detection

MODELING LOCAL VIDEO STATISTICS FOR ANOMALY DETECTION

متن کامل

Workload Hidden Markov Model for Anomaly Detection

We present an approach to anomaly detection based on the construction of a Hidden Markov Model trained on processor workload data. Based on processor load measurements, a HMM is constructed as a model of the system normal behavior. Any observed sequence of processor load measurements that is unlikely generated by the HMM is then considered as an anomaly. We test our approach taking real data of...

متن کامل

Hidden semi-Markov model for anomaly detection

In this paper, hidden semi-Markov model (HSMM) is introduced into intrusion detection. Hidden Markov model (HMM) has been applied in intrusion detection systems several years, but it has a major weakness: the inherent duration probability density of a state in HMM is exponential, which may be inappropriate for the modeling of audit data of computer systems. We can handle this problem well by de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2016

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2015.2504345