Online Anomaly Detection Under Markov Statistics With Controllable Type-I Error
نویسندگان
چکیده
منابع مشابه
Online Anomaly Detection under Adversarial Impact
Security analysis of learning algorithms is gaining increasing importance, especially since they have become target of deliberate obstruction in certain applications. Some security-hardened algorithms have been previously proposed for supervised learning; however, very little is known about the behavior of anomaly detection methods in such scenarios. In this contribution, we analyze the perform...
متن کاملHidden Markov Anomaly Detection
We introduce a new anomaly detection methodology for data with latent dependency structure. As a particular instantiation, we derive a hidden Markov anomaly detector that extends the regular one-class support vector machine. We optimize the approach, which is non-convex, via a DC (difference of convex functions) algorithm, and show that the parameter ν can be conveniently used to control the nu...
متن کاملModeling Local Video Statistics for Anomaly Detection
MODELING LOCAL VIDEO STATISTICS FOR ANOMALY DETECTION
متن کاملWorkload Hidden Markov Model for Anomaly Detection
We present an approach to anomaly detection based on the construction of a Hidden Markov Model trained on processor workload data. Based on processor load measurements, a HMM is constructed as a model of the system normal behavior. Any observed sequence of processor load measurements that is unlikely generated by the HMM is then considered as an anomaly. We test our approach taking real data of...
متن کاملHidden semi-Markov model for anomaly detection
In this paper, hidden semi-Markov model (HSMM) is introduced into intrusion detection. Hidden Markov model (HMM) has been applied in intrusion detection systems several years, but it has a major weakness: the inherent duration probability density of a state in HMM is exponential, which may be inappropriate for the modeling of audit data of computer systems. We can handle this problem well by de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2016
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2015.2504345